
Eur. Phys. J. D 41, 417–423 (2007)
DOI: 10.1140/epjd/e2006-00243-7 THE EUROPEAN

PHYSICAL JOURNAL D

Two-photon interaction between trapped ions and cavity fields

F.L. Semião and A. Vidiella-Barrancoa

Instituto de F́ısica “Gleb Wataghin”, Universidade Estadual de Campinas, 13083-970 Campinas, São Paulo, Brazil

Received 27 April 2006 / Received in final form 6 October 2006
Published online 10 November 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. In this paper, we generalize the ordinary two-photon Jaynes-Cummings model (TPJCM) by
considering the atom (or ion) to be trapped in a simple harmonic well. A typical setup would be an optical
cavity containing a single ion in a Paul trap. Due to the inclusion of atomic vibrational motion, the atom-
field coupling becomes highly nonlinear what brings out quite different behaviours for the system dynamics
when compared to the ordinary TPJCM. In particular, we derive an effective two-photon Hamiltonian with
dependence on the number operator of the ion’s center-of-mass motion. This dependence occurs both in
the cavity induced Stark-shifts and in the ion-field coupling, and its role in the dynamics is illustrated
by showing the time evolution of the probability of occupation of the electronic levels for simple initial
preparations of the state of the system.

PACS. 42.50.-p Quantum optics – 32.80.Qk Coherent control of atomic interactions with photons –
32.80.Wr Other multiphoton processes

1 Introduction

The Jaynes-Cummings model (JCM) [1] is the most ele-
mentary quantum model for the interaction of matter with
an electromagnetic field. In this model, a two-level atom
is coupled to a single quantized mode of a cavity field and
it is one of the few fully quantum-mechanical models that
is exactly solvable. It exhibits some unexpected nonclassi-
cal features as the revivals of the Rabi oscillations in the
atomic inversion, for instance [2]. The quantum origin of
this revival is a direct consequence of the non-vanishing
commutation relation between the creation and annihila-
tion operator of photons in the field mode [2]. During the
past decades, the JCM has been extended to more general
Hamiltonians including multilevel atoms [3], multimode
or external fields [4], multi-atom configurations [5], and
multi-photon transitions [6], just to mention a few exam-
ples. All these generalizations are part of what is called
cavity quantum electrodynamics (cavity QED) and the
quantized electromagnetic field plays a fundamental role
in those settings. By the other hand, trapped ions interact-
ing with classical fields have gained considerable interest
in the past few years, mainly because the system dynamics
closely resembles that of the JCM, with the quantized har-
monic motion of the ion’s center-of-mass playing the role
of the field [7]. Significant experimental advances in the
generation of quantum states in such a system [8] have
also indicated that trapped ions are very suited for the
study and physical implementation of quantum dynam-
ics [9]. It seems clear that a system comprising quantum
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cavity fields and trapped ions undergoing quantized har-
monic motion could bring many interesting consequences
and potential applications. A typical setup would be that
in which an ion trap is inserted in a high finesse optical
resonator so that the ion could interact with both quan-
tized and classical external fields [10]. Several authors have
studied this new setting in the framework of single-photon
transitions [11] and also Raman transitions driven by the
cavity field and a classical external laser [12,13]. However,
we are not restricted to single-photon transitions in the
realm of cavity QED. Other processes, such as two-photon
transitions, are particularly important and have potential
applications, e.g., in the generation of non-classical states
of the electromagnetic field, such as squeezed states [14]
or even photons with correlations that violate classical in-
equalities [15]. We would like to point out that several
nonlinear effects in trapped ions interacting with classical
laser fields have also been studied and applications sug-
gested [16,17].

This paper is concerned with the study of atom-field
two-photon interactions when including harmonic atomic
motion. We derive an effective Hamiltonian which not only
describes electronic two-photon transitions but also con-
tains a kind of phase-coupling between the vibrational
center-of-mass motion, the electronic degree of freedom,
and the cavity field. Another interesting feature of that
Hamiltonian is the presence of Stark-shifts depending on
the number operator of the harmonic motion. We then
analyze the system dynamics by means of the probability
of finding the ion in the electronic ground state, which is
an easily accessible quantity in ion trap experiments [8].
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Fig. 1. Schematic diagram of the three-level ion interacting
with a single mode quantized field with frequency ωc.

We discuss how this quantity is influenced by the statistics
of simple initial preparations of the quantum state of mo-
tion. In other words, we systematically compare our model
with the important and extensively studied TPJCM with-
out the motional effects [6].

2 The model and results

We consider a three-level ion in a cascade configuration
interacting with a single-mode quantized electromagnetic
field enclosed in a high finesse cavity. The schematic level
structure is depicted in Figure 1. It is assumed two-photon
resonance between the upper |e〉 and lower |g〉 atomic lev-
els and the intermediate level |r〉 is kept off-resonant. The
general Hamiltonian describing the interaction of trapped
ions (or atoms) and electromagnetic fields is discussed in
several papers [7,10–13,16,17], and in our case it reads

Ĥ = νâ†â+ ωb̂†b̂+ Eeσ̂ee + Erσ̂rr + Egσ̂gg

+[g1(σ̂gr b̂
† + σ̂rg b̂) + g2(σ̂reb̂

† + σ̂er b̂)] cos η(â† + â)
(1)

where â†(â) denotes the creation (annihilation) operator
of the center-of-mass vibrational motion of the ion (fre-
quency ν), b̂†(b̂) is the creation (annihilation) operator
of photons in the field mode (frequency ω), σ̂ij = |i〉〈j|
is a transition atomic operator, Ei is the energy of the
atomic level |i〉, g1 e g2 are the ion-field coupling con-
stants for the transitions |g〉 → |r〉 and |r〉 → |e〉, respec-
tively, and η = 2πa0/λ is the Lamb-Dicke (LD) param-
eter, being a0 the rms fluctuation of the ion’s position
in the lowest trap eigenstate, and λ the wavelength of
the cavity field. We have taken (� = 1) and this con-
vention will be followed in the rest of our paper. The
Lamb-Dicke parameter is the same for both transitions
(coupling constants g1 and g2) because both are driven by
the same (cavity) field, i.e. with the same frequency (or
k vector). The cascade level structure and the field fre-
quency [see Fig. 1] have been chosen such that by making

δ = Ee − Er − ω = Eg − Er + ω � g1, g2 one can de-
rive an effective two-photon Hamiltonian by means of the
adiabatic elimination of the level |r〉.

The general Hamiltonian (1) is highly nonlinear be-
cause the function cos η(â† + â) contains powers of opera-
tors of the center-of-mass motion. Each term in the power
series expansion will be dependent on powers of the LD
parameter η. We can say generally that the higher the
value of η the stronger will be the influence of nonlinear
terms in the Hamiltonian (1). It is well-know that ap-
propriate choices of the ion-field detuning δ may lead to
different kinds of couplings in the rotating wave approxi-
mation (RWA) [7]. In general, it is assumed δ = kν, with k
integer, what leads to either transitions between the trap
eigenstates (k-sideband Hamiltonian, for k �= 0) or just
a phase-coupling with no energy transitions for the ion’s
center-of-mass harmonic motion (carrier Hamiltonian, for
k = 0). However, it is not necessary to have δ = 0 in
order to forbid those transitions (make them unlikely).
The same result applies for a less demanding situation in
which δ �= kν with δ � ν. The advantage of having this
less demanding condition on the detuning δ is that now
it is possible to think of a situation where the field and
atom can be kept far off-resonance (δ � g1, g2) without
having excitations of the center-of-mass motion. This may
be achieved by setting ν � δ � g1, g2 and, as stated be-
fore, δ �= kν. In this case, it is possible to obtain a carrier
two-photon Hamiltonian as we are going to show next.

The Hamiltonian (1) in the interaction picture reads

ĤI =

[g1(σ̂rg b̂e
−iδt + σ̂gr b̂

†eiδt) + g2(σ̂er b̂e
iδt + σ̂reb̂

†e−iδt)]

× cos η(â†eiνt + âe−iνt), (2)

which can be rewritten as

ĤI =
∑

α,β

[g1(σ̂rg b̂e
−i[δ+ν(α−β)]t + σ̂gr b̂

†ei[δ+ν(α−β)]t)

+g2(σ̂er b̂e
i[δ+ν(α−β)]t + σ̂reb̂

†e−i[δ+ν(α−β)]t)]

×f(â†, â;α, β), (3)

where

f(â†, â;α, β) =
e−η2/2

2α!β!
[(iη)α+β + (−iη)α+β ]a†αaβ. (4)

Analyzing the temporal dependence of Hamiltonian (3),
one can see that the frequencies may be carefully chosen
allowing the RWA to be performed. In this approximation,
only the slow frequency terms are kept while the rapidly
oscillating ones are discarded. For sufficiently short inter-
action times, this approximation is quite accurate as far as
the coupling constants are not too strong. How strong the
coupling constants must be when compared to the other
frequencies of the problem is usually found by using time
dependent perturbation theory. In our problem, the terms
in (3) oscillate in time as ei±(δ+kν)t, with k integer. In the
regime δ � ν and δ �= kν, the slowly oscillating terms are
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those with temporal dependence e±iδt. This only happens
when α = β in (3). Then, by dropping out the rapidly
oscillating terms in (3), we arrive at the following approx-
imate Hamiltonian in the original picture

Ĥ = νâ†â+ ωb̂†b̂+ Eeσ̂ee + Erσ̂rr + Egσ̂gg

+f(â†â)[(g1σ̂gr + g2σ̂re)b̂† + (g1σ̂rg + g2σ̂er)b̂]
(5)

where [17,18],

f(â†â) = e−η2/2
∞∑

α=0

(−1)αη2αa†αaα

α!2

= e−η2/2 : J0(2η
√
â†â) :, (6)

and : J0 : is the normally ordered zeroth order Bessel
function of the first kind. In an appendix in [18], it is
shown how to convert : J0 : in a form that does not contain
the normal ordering symbol but is an expansion in Fock
basis. This is very useful for doing the plots presented in
the last part of this paper, and the relation between both
forms is in our case given by

: J0(2η
√
â†â) :=

∞∑

n=0

Ln(η2)|n〉〈n|, (7)

where Ln is the Laguerre polynomial. The Hamiltonian (5)
describes a situation in which the ion’s center-of-mass mo-
tion couples to field and electronic degree of freedom in
such a way that only phases are involved, i.e. there is no
real transitions between vibrational energy levels. There is
just photonic transitions taking place. The magnitude of
this phase-coupling is contained in f(â†â) which is a func-
tion of the number operator of the vibrational motion. In
the limit η → 0 the function f(â†â) tends to the identity
operator, what corresponds to the free motion of the ion.

In order to derive an effective two-photon Hamiltonian,
let us now find the equations of motion for some relevant
operators. The starting point would be σ̂eg that is sup-
posed to be present in the effective Hamiltonian once its
function is to cause the ion to make a direct two-photon
transition from the state |g〉 to |e〉.

The Heisenberg equation for σ̂eg using (5) is given by

i
d

dt
σ̂eg = (Eg − Ee)σ̂eg + g1f(â†â)σ̂er b̂

† − g2f(â†â)σ̂rg b̂
†.

(8)
The right hand side of (8) involves operators in the form
f(â†â)σ̂ij b̂

†. We need to compute the Heisenberg equa-
tions for these operators as well, and they are given by

i
d

dt
[f(â†â)σ̂er b̂

†] = (Er − Ee − ωc)f(â†â)σ̂er b̂
†

+ [f(â†â)]2[g1b̂†b̂σ̂eg + g2b̂
†2(σ̂ee − σ̂rr)]

(9)

i
d

dt
[f(â†â)σ̂rg b̂

†] = (Eg − Er − ωc)f(â†â)σ̂rg b̂
†

+ [f(â†â)]2[g1b̂†2(σ̂rr − σ̂gg)

− g2(1 + b̂†b̂)σ̂eg ]. (10)

The adiabatic elimination of the level |r〉 follows from (9)
and (10) by considering the condition δ � g1, g2. To make
this clear, it is convenient to define new operators in an
appropriate reference frame as σ̂ij → σ̂ije

i(Ej−Ei)t, b̂(t) →
b̂e−iωct e â(t) → âe−iνt. In this new frame, we may rewrite
(8), (9) and (10) as

i
d

dt
σ̂eg = g1f(â†â)σ̂er b̂

†eiδt + g2f(â†â)σ̂rg b̂
†e−iδt, (11)

i
d

dt
[f(â†â)σ̂er b̂

†] = [f(â†â)]2[g1b̂†b̂σ̂eg

+ g2b̂
†2(σ̂ee − σ̂rr)]e−iδt, (12)

i
d

dt
[f(â†â)σ̂rg b̂

†] = [f(â†â)]2[g1b̂†2(σ̂rr − σ̂gg)

− g2(1 + b̂†b̂)σ̂eg ]eiδt. (13)

We then integrate (12) and (13) under the assumption
that δ � g1, g2. By substituting the result of the integra-
tions in (11) and also considering that the level |r〉 is not
initially populated, we end up with the following equation
of motion in the original Heisenberg picture

i
d

dt
σ̂eg = f2(â†â)

[
g2
1

δ
b̂†b̂− g2

2

δ
(1 + b̂†b̂)

]
σ̂eg

+
g1g2
δ
f2(â†â)(σ̂ee − σ̂gg)b̂†2 (14)

which may be obtained from the effective Hamiltonian

Ĥ = Ĥ0 + ĤStark + ĤI , (15)

being the free part given by

Ĥ0 = νâ†â+ ωcb̂
†b̂+ ωc(σ̂ee − σ̂gg), (16)

the Stark shifts

ĤStark =
g2
2

δ
f2(â†â)(1+ b̂†b̂)σ̂ee +

g2
1

δ
f2(â†â)b̂†b̂ σ̂gg, (17)

and the two-photon interaction term between ion and field
given by

ĤI =
g1g2
δ
f2(â†â)(σ̂eg b̂

2 + σ̂ge b̂
†2). (18)

It describes two-photon transitions between the levels |e〉
and |g〉 with a coupling constant that depends on energy
of the center-of-mass motion via f2(â†â).

An interesting feature of the Hamiltonian (15) is the
dependence of the Stark shifts upon the motion, fact that
is mathematically expressed by the presence of f2(â†â)
in (17). This is the first remarkable feature of our model
that is not present in the ordinary TPJCM. This means
that the vibrational degree of freedom will have an impor-
tant influence on the dynamics of the system not only due
to the statistics of the quantum state of motion and the
phase-coupling with the rest of the system but also via the
Stark-shifts. As we are going to see below, even small vari-
ations of the Lamb-Dicke parameter will produce signifi-
cant changes in the dynamics of the system. This makes
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the model here presented useful for the investigation of
quantum aspects of the light-matter interaction.

Once we have derived the phase-coupling two-photon
Hamiltonian with motion-dependent Stark-shifts (15),
which is the main result of our paper, we now proceed
with the study of the dynamics of the electronic levels for
simple but interesting and experimentally feasible initial
preparations of the system. In order to do that, we will
compute the occupation of level |g〉 that is defined as

Pg(t) = |〈g|ψ(t)〉|2. (19)

It follows from the form of (15) that as long as the ion is
initially in its electronic excited state, the global state of
the system may be written as

|ψ(t)〉 =
∞∑

m=0

∞∑

n=0

amn(t)|m,n, e〉 + bmn(t)|m,n+ 2, g〉,
(20)

where the index m is referred to the motion and n to the
field. If one finds amn(t) an bmn(t), the desired probabil-
ity Pg(t) is just the summation in m and n of the squared
absolute value of bmn(t). In the interaction picture, the
coefficients obey the following system of differential equa-
tions

i
d

dt
amn(τ) = χ1 amn(τ) + χ2 bmn(τ),

i
d

dt
bmn(τ) = χ3 bmn(τ) + χ2 amn(τ), (21)

where we defined

g ≡ g1g2
δ

; τ ≡ gt; r =
g1
g2

; χ1 ≡ f2(m)
r

(n+ 1);

χ2 ≡
√

(n+ 1)(n+ 2)f2(m); χ3 = rf2(m)(n+ 2).
(22)

The solution of (21) gives one all the information available
about the physical system described by the Hamiltonian
(15). For the purposes of this paper though, we are in-
terested in the simplest case g1 = g2 (r = 1). Also, we
will be particularly interested in initial preparations given
either by

amn(0) = e−|α|2/2 α
m

√
m!

δnp

bmn(0) = 0 (23)

or

amn(0) = e−(|α|2+|β|2)/2 α
mβn

√
m!n!

bmn(0) = 0. (24)

In both cases the ion is initially in the electronic excited
state |e〉, and particularly in (23) the motion is in the
coherent state |α〉 and the field in the Fock state |p〉 con-
taining exactly p photons, while in (24) the motion and
field are initially prepared in coherent states |α〉 and |β〉,

respectively. The experimental generation of vacuum Fock
and coherent states of motion for trapped ions [8], as well
as of electromagnetic cavity fields [19], have already been
reported. The solution of (21) for r = 1 and the ion ini-
tially in the excited state is

amn(τ) = amn(0)
[
cos(Λmnτ/2) + i

f2(m)
Λmn

sin(Λmnτ/2)
]

bmn(τ) = −2 i amn(0)
χ2

Λmn
sin(Λmnτ/2), (25)

where Λmn ≡ √
f4(m) + 4χ2

2. The sought probability is
finally found to be

Pg(τ) =
∞∑

m=0

∞∑

m=0

|amn(0)|2 4χ2
2

Λ2
mn

sin2(Λmn τ/2). (26)

In what follows we will be studying the effect of the motion
on Pg(τ). Mathematically, the ordinary TPJCM may be
obtained by making η → 0. We note that both the frequen-
cies and amplitudes of each term in equation (26) have
distinct contributions from the quantized field and from
the ion’s vibrational motion. For the first initial prepara-
tion (23), we clearly see [Fig. 2] how strong the influence of
the atomic motion is because slight changes in the Lamb-
Dicke parameter η lead to quite different behaviours. The
expected Rabi oscillations found in the TPJCM are mod-
ified as the parameter η is increased. For small values of
η, i.e. in the limit of the TPJCM, the coherent state of
motion induces almost complete periodic collapses and re-
vivals. By increasing η, the dynamics changes again and
looses that periodicity until a complete irregular pattern
takes place. Similar strong effects of the harmonic motion
on the field dynamics in cavity QED setups have been al-
ready reported, see for instance Di Fidio et al. [13]. They
consider a trapped ion in a Raman configuration interact-
ing with a cavity field and an external laser. The main
difference between our model and the one treated in [13]
is that the two-photon configuration is in essence a peri-
odic model while the Raman coupling does not necessarily
lead to a periodic behaviour. Therefore, the inclusion of
the atomic motion might not produce the same effects on
those two different cavity-QED setups. In fact, the influ-
ence of the atomic motion should become more evident
in the model treated here, as the oscillations induced by
the atomic motion are in general not periodic, in contrast
to the oscillations due to the interaction with the field.
Considering now the second initial preparation (24), for
an initial coherent state for the field, the dynamics is also
modified by the harmonic motion [Fig. 3]. In this case, the
characteristic (almost) periodic evolution found in the in
the ordinary TPJCM and reported in several papers [6],
is again modified by the increasing of η. The beats due to
the statistics of the initial state of the center-of-mass mo-
tion (coherent state) clearly destroy the regular patterns.
Moreover, for this initial preparation in which both the
field and the center-of-mass motion of the ion are prepared
in coherent states, we found for intermediate values of the
LD parameter the interesting behaviour of revivals occur-
ring at longer times [20], as shown in Figure 4. This super
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Fig. 2. Time evolution of electronic ground state population
for different values of the Lamb-Dicke parameter. The system
has initially been prepared in the state |ψ(0)〉 = |e, α = 2,
p = 0〉.
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Fig. 3. Time evolution of electronic ground state population
for different values of the Lamb-Dicke parameter. The system
has initially been prepared in the state |ψ(0)〉 = |e, α = 2,
β = 2〉.



422 The European Physical Journal D

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

P
g
(τ

)

τ

η = 0.05

Fig. 4. Long time evolution of the electronic ground state
population. The system has initially been prepared in the state
|ψ(0)〉 = |e, α = 2, β = 2〉.

revival or revival of revivals is a revival at long times of
the Rabi oscillations and the ordinary short-time revivals.
That is another special feature happening for this model
that is not present in the TPJCM. Once the dynamics in
the TPJCM is almost periodic for short and long interac-
tion times, the concept of super revivals has no meaning
in this case. All these different effects indicate some of the
several interesting processes that might arise when consid-
ering cavity quantum electrodynamics with trapped ions,
specially the model proposed here. We note, from the ex-
amples above, that the effects of the quantized field and
the atomic motion are somehow superimposed and have
peculiar features, such as, for instance, a dependence of
the Stark shifts terms on the atomic motion.

3 Conclusions

We have investigated the interaction of a trapped ion
with the quantized cavity field via two photon transitions.
Particularly in this paper, we have studied this system
focusing on the fundamental aspects of the understand-
ing of light-matter interaction. We have derived an ef-
fective Hamiltonian under the rotating wave approxima-
tion and presented its analytical solution. This effective
Hamiltonian contains motion-dependent Stark-shifts and
a coupling constant which is a function of the intensity of
motion, i.e. it is a function of the massive oscillator num-
ber operator. Both features are not present in the original
two-photon Hamiltonian of the TPJCM. In particular, we
have calculated the evolution of the population of the elec-
tronic levels, and found how the center-of-mass motion de-
cisively changes the dynamics. In general, a treatment of
the open system by including cavity losses, spontaneous
electronic emission, and so forth, is necessary, although
it rarely possesses a closed analytical solution. Some im-
portant and exceptional cases that admit analytical so-
lutions for especial regimes were pointed out and treated
by Di Fidio et al. [13]. Even though the system consid-
ered in [13] is not identical to ours as they treat the case
of Raman transitions, most their findings may be applied

to our problem. As they point out, the inclusion of these
realistic conditions will certainly have a destructive effect
as long as quantum coherences are involved. In practice,
some behaviours of Pg(τ) presented here will not be ob-
served in the current experimental setups, and it is the
case for the super revival phenomenon. However, it is al-
ways important to investigate the presence or not of these
typical quantum effects. On the other hand, differences
between our model and the ordinary TPJCM arise also at
shorter times as, indicated in Figures 2 and 3. Therefore, it
would be possible to observe some of those effects with the
achievement of the strong coupling regime; although losses
and dephasing effects are present, they will have a much
weaker magnitude than the cavity-ion coupling itself. The
system comprising cavities and trapped ions studied here
is now under intense experimental investigation with sig-
nificant control improvements [21], and efforts are being
made in order to reach the strong coupling regime.
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